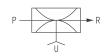
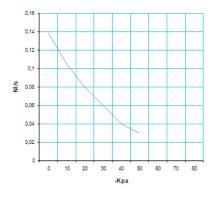
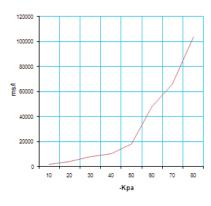

SINGLE-STAGE VACUUM GENERATORS PVP05, PVP2 and PVP3

With their extremely reduced size and high performance, these single-stage vacuum generators operate exploiting the Venturi principle. Supplying the generator with compressed air in P, vacuum will be generated at connection U, while both the supply and the sucked air will be released through R.By interrupting the air supply in P, the vacuum effect in U will also stop. The vacuum generators described in this page are generally used for interconnecting vacuum cups, for gripping and handling nonporous objects and equipment with low capacity requirements. They are made with anodised aluminium, with aluminium ejectors (PVP05) or brass (PVP2 - PVP3).






_	P=COMPRESSED AI	R CONNECTION	R=EXHAUST	U=VACUUM CONNECTION						
_	Art.	PVP05								
0	uantity of sucked air	cum/h	0.36	0.42	0.42	0.47	0.50	0.50		
N	lax. vacuum level	-KPa	22	33	42	48	61	82		
F	inal pressure	mbar ass.	780	670	580	520	390	180		
S	upply pressure	bar	1	2	3	4	5	6		
A	ir consumption	NI/s	0.13	0.20	0.27	0.34	0.40	0.50		
V	Vorking temperature					-20 / +80				
N	loise level	dBA					7	0		
V	Veight	g	1				1	4		

Note: All the vacuum data indicated in the table are valid at the normal atmospheric pressure of 1013 mbar and are obtained with a constant supply pressure.

AIR CAPACITY (NI/s) AT DIFFERENT VACUUM LEVELS (-KPa)

_	7 m 1 0 m 1 0 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m												
	Generator	Supply press.	Air consumption	Air capacity (NI/s) at different vacuum levels (-KPa)									
	art.	bar	NI/s	0	10	20	30	40	50	60	70	80	-KPa
	PVP 05	6.0	0.5	0.138	0.105	0.08	0.06	0.04	0.03				82

EVACUATION TIME (ms/l=s/m3) AT DIFFERENT VACUUM LEVELS (-KPa)

Generator	Supply press.	Air consumption		Max. vacuum level							
art.	bar	NI/s	10	20	30	40	50	60	70	80	-KPa
PVP 05	6.0	0.5	2000	4000	8000	10000	18000	48000	66000	104000	82